. C O ] 2 3 M ay 2 00 7 COINCIDENCES AMONG SKEW SCHUR FUNCTIONS

نویسندگان

  • Victor Reiner
  • Kristin M. Shaw
چکیده

New sufficient conditions and necessary conditions are developed for two skew diagrams to give rise to the same skew Schur function. The sufficient conditions come from a variety of new operations related to ribbons (also known as border strips or rim hooks). The necessary conditions relate to the extent of overlap among the rows or among the columns of the skew diagram.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 05 05 27 3 v 1 [ m at h . C O ] 1 2 M ay 2 00 5 CELL TRANSFER AND MONOMIAL POSITIVITY

We give combinatorial proofs that certain families of differences of products of Schur functions are monomial-positive. We show in addition that such monomial-positivity is to be expected of a large class of generating functions with combinatorial definitions similar to Schur functions. These generating functions are defined on posets with labelled Hasse diagrams and include for example generat...

متن کامل

Coincidences among Skew Schur Functions

New sufficient conditions and necessary conditions are developed for two skew diagrams to give rise to the same skew Schur function. The sufficient conditions come from a variety of new operations related to ribbons (also known as border strips or rim hooks). The necessary conditions relate to the extent of overlap among the rows or among the columns of the skew diagram.

متن کامل

ar X iv : m at h / 01 10 07 7 v 1 [ m at h . C O ] 7 O ct 2 00 1 FROBENIUS – SCHUR FUNCTIONS

We introduce and study a new basis in the algebra of symmetric functions. The elements of this basis are called the Frobenius–Schur functions (FSfunctions, for short). Our main motivation for studying the FS-functions is the fact that they enter a formula expressing the combinatorial dimension of a skew Young diagram in terms of the Frobenius coordinates. This formula plays a key role in the as...

متن کامل

ar X iv : m at h . C O / 0 40 54 34 v 1 2 3 M ay 2 00 4 DECOMPOSABLE COMPOSITIONS , SYMMETRIC QUASISYMMETRIC FUNCTIONS AND EQUALITY OF RIBBON SCHUR FUNCTIONS

We define an equivalence relation on integer compositions and show that two ribbon Schur functions are identical if and only if their defining compositions are equivalent in this sense. This equivalence is completely determined by means of a factorization for compositions: equivalent compositions have factorizations that differ only by reversing some of the terms. As an application, we can deri...

متن کامل

1 1 M ay 2 00 7 WEIGHT 2 BLOCKS OF GENERAL LINEAR GROUPS AND MODULAR ALVIS - CURTIS DUALITY

We obtain the structure of weight 2 blocks and [2 : 1]-pairs of q-Schur algebras, and compute explicitly the modular Alvis-Curtis duality for weight 2 blocks of finite general linear groups in non-defining characteristic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006